
ULI101: INTRODUCTION TO UNIX / LINUX AND THE INTERNET

WEEK 10: LESSON 2

POSITIONAL PARAMETERS /

COMMAND SUBSTITUTION / MATH OPERATIONS

TESTING CONDITIONS / CONTROL FLOW STATEMENTS (LOGIC / LOOPS)

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON 2 TOPICS

Positional Parameters

• Definition / Purpose / Usage / Demonstration

Command Substitution / Math Operations

• Definition / Purpose / Usage / Demonstration

Control Flow Statements

• Definition / Purpose

• Exit Status $? / Testing Conditions (test) / Demonstration

• Control Flow Statements (if, if-else, for) / Demonstration

Perform Week 10 Tutorial

• Investigation 2

• Review Questions (Questions Part A #3,4 , Part B Walk-Thru #2)

Work on Assignment #3: (Sections 3 and 4)

POSITIONAL PARAMETERS

A positional parameter is a variable within a shell program;

its value is set from an argument specified on the command line

that invokes the program.

Positional parameters are numbered and are referred to

with a preceding ''$’’: $1, $2, $3, and so on.

Reference: http://osr600doc.xinuos.com/en/SDK_tools/_Positional_Parameters.html

arg1 arg2 arg3 … argN

http://osr600doc.xinuos.com/en/SDK_tools/_Positional_Parameters.html

POSITIONAL PARAMETERS

Assigning Values as Positional Parameters

There are two methods to assign values as positional parameters:

• Use the set command inside a shell script with values as arguments

• Run a shell script with arguments (i.e. like a command)

arg1 arg2 arg3 … argN

POSITIONAL PARAMETERS

Using the set command:

set apples oranges bananas

You place a dollar sign ($) prior to the number

corresponding to the position of the argument

Examples:

echo $1

echo $2

echo $3

arg1 arg2 arg3 … argN

POSITIONAL PARAMETERS

Running a Shell Script with Arguments:

You would use positional parameters in your shell script that would

expand the positional parameters with its stored value.

Here are the contents of the shell script called myScript.bash:

#!/bin/bash

echo “First argument is $1”

echo “Second argument is $2”

You would then issue the myScript.bash shell script with arguments

that would be used within the shell script. For Example:

./mySript.bash apples oranges

arg1 arg2 arg3 … argN

POSITIONAL PARAMETERS

The positional parameter $0 refers to either the name of shell

where command was issued, or name of shell script file being executed.

If using positional parameters greater than 9,
you need to include number within braces { }

Examples:

echo $0

echo ${10}

arg1 arg2 arg3 … argN

POSITIONAL PARAMETERS

The shift command can be used with positional parameters to

move positional parameters to the left by one or more positions.

Examples:

shift

shift 2

arg1 arg2 arg3 … argN

SPECIAL PARAMETERS

There are a group of special parameters that can be used for shell scripting.

A few of these special parameters and their purpose are displayed in the table below.

$* $# $?

Parameter Purpose

$* Display all positional parameters.

“$*” Containing values of all arguments separated by a single space

“$@” Multiple double-quoted strings, each containing the value of one argument

$# Represents the number of parameters

(not including the script name)

$? Exit Status of previous command (discussed in next lesson)

POSITIONAL AND SPECIAL PARAMETERS

Task:

Write a Bash shell script that accepts arguments from the shell script filename when

executed (i.e., just like a regular Linux command).

The Bash Shell script will clear the screen and then display the following

text (using special parameters):

Number of arguments are: (number of positional parameters)

The arguments are: (displays of all positional parameters)

COMMAND SUBSTITUTION

Command substitution is a facility that allows a command to be run and its

output to be pasted back on the command line as arguments to another command.

Reference: https://en.wikipedia.org/wiki/Command_substitution

Usage:

command1 $(command2) or command1 `command2`

Examples:

file $(ls)

mail –s “message” $(cat email-list.txt) < message.txt

echo "The current directory is $(pwd)"

echo "The current hostname is $(hostname)"

echo "The date is: $(date +'%A %B %d, %Y')"

https://en.wikipedia.org/wiki/Command_substitution

COMMAND SUBSTITUTION

Task:

Write a Bash shell script that sets all files in your current directory as positional parameters.

Use command substitution to store all files in your current directory as positional parameters.

The Bash Shell script will clear the screen and then display the following text

(using special parameters):

Number of files in current directory are:

(number of positional parameters)

Here are the filenames:

(displays of all positional parameters)

MATH OPERATIONS

Performing math calculations can be an important element in shell scripting.

A problem you may experience in shell scripting (as opposed to other programming languages)

is that in shell scripting, all characters (including numbers) are stored as text.

This can create problems when performing math operations.

Demonstration:

num1=5;num2=10

echo “$num1+$num2”

5+10

echo “$num1-$num2”

5-10

echo “$num1*$num2”

5*10

MATH OPERATIONS

In order to make math operations work in a Linux shell or shell script,

you need to convert numbers stored as text into binary numbers.

We can do this by using using a math construct consisting

two pairs of round brackets (())

Examples:

num1=5;num2=10

echo “$(($num1 + $num2))”

15

echo “$((num1-num2))”

-5

((product=num1*num2))

echo “$product”

50

MATH OPERATIONS

Additional math operators are shown below.

Examples:

num1=2;num2=3

echo $((num1/num2))

0

echo $((num1%num2))

3

echo $((num1**num2))

8

echo $((num2++))

4

echo $((num1--))

1

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

** Exponentiation

++ Increment (increase by 1)

-- Decrement (decrease by 1)

MATH OPERATIONS

Task 1:

Write a Bash shell script that prompts the user for the sale price of an item

and the number of items purchased.

The shell script will display the total amount (eg. price x number of items) of the sale.

For simplicity, you can assume prices are just integers.

Task 2:

Write a Bash shell script that prompts the user prompts the user for two numbers.

The shell script will then show the results from addition, subtraction, multiplication

and division of those numbers.

CONTROL FLOW STATEMENTS

So far, we have created Bash Shell Scripts that execute

Linux commands in a fixed sequence.

Although those type of scripts can be useful, we can use

control flow statements that will control the sequence

of the running script based on various situations or conditions.

Control Flow Statements are used to make your shell scripts

more flexible and allow them to adapt to changing situations.

CONTROL FLOW STATEMENTS

The $? (exit status) Special Parameter

The special parameter $? is used to determine the exit status of the previously issued

Linux command or Linux pipeline command.

The exit status will either display a zero (representing TRUE)

or a non-zero number (representing FALSE).

This method can be used with control-flow statements to change the sequence

of your shell script execution. We will apply this when we discuss advanced

shell scripting in two weeks.

Examples:

PWD

echo $?

pwd

echo $?

CONTROL FLOW STATEMENTS

The test Linux Command

The test Linux command is used to test conditions to see if they are TRUE

(i.e. value zero) or FALSE (i.e. value non-zero).

This method can also be used with control-flow statements to

change the sequence of your shell script execution.

Examples:

name=“Murray”

test $name = “Murray”

echo $?

test $name = “David”

echo $?

CONTROL FLOW STATEMENTS

Numerical Comparisons with test Command

You CANNOT use the > or < symbols when using the test command

since those are redirection symbols.

You need to use options when performing numerical comparisons.

Refer to the table below for test options and their purposes.

Option Purpose

-eq Equal to

-ne Not equal to

-lt , -le Less than, Less than or equal to

-gt, -ge Greater than, greater than or equal to

CONTROL FLOW STATEMENTS

The test Linux Command: Additional Options

There are other comparison options that can be used with the test command such

as testing to see if a regular file or if directory pathname exists, or if the regular

file pathname is non-empty.

Refer to the table below for some of those additional options.

Option Purpose

-f file_pathname Regular filename exists

-d file_pathname Directory filename exists

-s file_pathname Regular filename is non-empty

-w file_pathname file exists / write permission is granted

CONTROL FLOW STATEMENTS - LOGIC

Logic Statements

A logic statement is used to determine which Linux commands to be

executed based on the result of a test condition or command

(i.e. TRUE if zero value) or FALSE (if non-zero value).

There are several logic statements, but we will just concentrate on

if statement and the if-else statements.

CONTROL FLOW STATEMENTS - LOGIC

if Control Flow Statement

If the test command returns a TRUE value,

then the Linux Commands between then and fi statements are executed.

If the test command returns a FALSE value,

the if statement is by-passed.

Usage:

if test condition

then

command(s)

fi

CONTROL FLOW STATEMENTS - LOGIC

Using [] to Represent test Command

A set of square brackets [] can be used to represent the test command.

NOTE: There must be spaces between the square brackets

and the test condition.

Example:

num1=5

num2=10

if [$num1 –lt $num2]

then

echo “Less Than”

fi

CONTROL FLOW STATEMENTS - LOGIC

if-else Control Flow Statement

If the test condition returns a TRUE value, then the Linux Commands

between the then and else statements are executed.

If the test returns a FALSE value, then the the Linux Commands

between the else and fi statements are executed.

Usage:

if test condition

then

command(s)

else

command(s)

fi

CONTROL FLOW STATEMENTS - LOGIC

Instructor Demonstration

Task1:

Write a Bash shell script that will first set a variable called course to the value

uli101 (lowercase). Then the shell script will clear the screen and prompt the user

for the current course code. Use logic that if the user’s entry does match the value

contained in the variable course, the following text is displayed:

You are correct

Task2:

Modify the previous Bash Shell script to display the alternative message if the user’s

entry does NOT match the value (stored in the variable called course)

then the following alternative text is displayed:

You are incorrect

CONTROL FLOW STATEMENTS - LOOPS

Loop Statements (iteration)

A loop statement is a series of steps or sequence of statements executed repeatedly

zero or more times satisfying the given condition.

Reference:

https://www.chegg.com/homework-help/definitions/loop-statement-3

https://www.chegg.com/homework-help/definitions/loop-statement-3

CONTROL FLOW STATEMENTS - LOOPS

The for Loop

There are several loops, but we will look at the for loop using a list.

Usage:

for item in list

do

command(s)

done

The variable item will hold one item from the list every time

the loop iterates (repeats) the commands between the do and

done reserved words.

A list can consist of a series of arguments (separated by spaces)

or supplied by command substitution

CONTROL FLOW STATEMENTS - LOOPS

The for Loop

Example:

for x in apples oranges bananas

do

echo “The item is: $x”

done

CONTROL FLOW STATEMENTS - LOOPS

Task:

Write a Bash shell script that sets all files in your current directory

as positional parameters. Use command substitution to store

all files in your current directory as positional parameters.

The Bash Shell script will clear the screen and then display the following

text (using special parameters). Use a for loop to display each filename

on a SEPARATE line using a for loop:

Number of files in current directory are:

(number of positional parameters)

Here are the filenames:

(displays each positional parameters on a SEPARATE line)

HOMEWORK

Getting Practice

To get practice to help perform assignment #3, perform Week 10 Tutorial:

• INVESTIGATION 3: COMMAND SUBSTITUTION / MATH OPERATIONS

• INVESTIGATION 4: USING CONTROL FLOW STATEMENTS IN SHELL SCRIPTS

• LINUX PRACTICE QUESTIONS (Part A 3,4 , Part B Walk-Thru #2)

Work on Assignment #3:

• Section 3: Interactive Shell Environment

• Section 4: Introduction To Scripting (phone)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial10:_Shell_Scripting_-_Part_1#INVESTIGATION_3:_COMMAND_SUBSTITUTION_.2F_MATH_OPERATIONS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial10:_Shell_Scripting_-_Part_1#INVESTIGATION_4:_USING_CONTROL_FLOW_STATEMENTS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial10:_Shell_Scripting_-_Part_1#LINUX_PRACTICE_QUESTIONS

