
ULI101: INTRODUCTION TO UNIX / LINUX AND THE INTERNET

WEEK 10 LESSON 1

INTRODUCTION TO SHELL SCRIPTING /
CREATING SHELL SCRIPTS /
SHELL VARIABLES

PHOTOS AND ICONS USED IN THIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

LESSON 1 TOPICS

Shell Scripts
• Definition / Purpose
• Considerations When Creating Shell Scripts /
• Comments / She-bang line / echo command
• Creating Shell Scripts / Running Shell Scripts / Demonstration

Shell Variables
• Definition / Purpose
• Environment Variables / User Defined Variables / read command
• Demonstration

Perform Week 10 Tutorial
• Investigation 1
• Review Questions (Questions Part A 1 – 2 , Part B Walk-Thru #1)

CREATING SHELL SCRIPTS

Definition

A shell script is a computer program designed to be run by the Unix shell,
a command-line interpreter.

Typical operations performed by shell scripts include
file manipulation, program execution, and printing text.

Reference: https://en.wikipedia.org/wiki/Shell_script

https://en.wikipedia.org/wiki/Shell_script

CREATING SHELL SCRIPTS

Considerations When Creating Shell Scripts

The reason to create shell scripts is to automate the execution of
commonly issued Linux commands, shell operations, math
calculations as well as Logic / Loop operations.

Prior to the creation of the shell script file, you should plan
the shell script and list steps that you want to accomplish.

Those sequence of steps can then be used to create your shell script.

CREATING SHELL SCRIPTS

Considerations When Creating Shell Scripts

Once you have planned your shell script you need to create a shell script file via
a text editor that will contain Linux commands.

When creating a shell script, avoid using filenames of existing
Linux commands. You can use the which command to see if the filename is
recognized as a Unix/Linux command: (e.g. which shell-script-name)

Adding an extension to your shell script filename will help to
identify the type of shell that the shell script was designed to run.

Examples:

clean-directory.bash
copy-directory-structure.csh

CREATING SHELL SCRIPTS

The Shebang Line

The # symbol makes the shell ignores running text after this symbol so that text can
be used to provide information of how the shell script works.

This is a comment

The she-bang line is a special comment at top of your shell script to run
a shell script within a specific shell.

Example:

#!/bin/bash

The shebang line must appear on the first line and at the beginning of the line,
otherwise, it will be treated as a regular comment and ignored.

CREATING SHELL SCRIPTS

The Shebang Line

Since Linux shells have evolved over a period of time, using a she-bang line forces
the shell script to run in a specific shell, which could prevent errors
in case an older shell does not recognize newer features from recent shells.

You can use the which command to determine the full pathname of the shell.

which bash
/bin/bash

CREATING SHELL SCRIPTS

Displaying Text with the echo Command

When creating shell scripts, it is useful to display text to prompt
the user for data, display results or notify the user of incorrect
usage of the shell script.

The echo command is used to display text.

To prevent problems with special characters, it is recommended to
use double-quotes which will allow the values of variables to be
displayed.

Example:

echo “My username is: $USER”

RUNNING A SHELL SCRIPT

Running Shell Scripts

In order to run your shell script by name, you need to first
assign execute permissions for the user.

To run your shell script, you can issue the shell script’s pathname
using a relative, absolute, or relative-to-home pathname

Examples:

chmod u+x myscript.bash

./myscript.bash
/home/username/myscript.bash
~/myscript.bash

FYI: You can run a shell script without execute permissions by
issuing the shell command followed by the shell script’s pathname.

Example:

bash ~murray.saul/scripts/week10-check-1

You can add the current directory that contains the shell script so
it can be issued only by filename (not pathname).

Example:

PATH=$PATH:.

To be persistent on new shell instances, setting the PATH
environment variable would need to be added in your profile
(start-up) file (discussed in a later lesson).

INSTRUCTOR DEMONSTRATION

Task:

Create a Bash Shell script to clear the screen and then display all users
that are currently logged onto the system.

SHELL SCRIPTING

Variables

Variables are used to store information to be referenced and
manipulated in a computer program. They also provide a way of labeling data
with a descriptive name, so our programs can be understood more clearly by
the reader and ourselves…

…It is helpful to think of variables as containers that hold information.
Their sole purpose is to label and store data in memory. This data can
then be used throughout your program.

Reference: https://launchschool.com/books/ruby/read/variables

https://launchschool.com/books/ruby/read/variables

SHELL SCRIPTING

Using Variables

Shell variables are classified into two groups:

System (shell) variables:

Describes the OS system’s working environment which can be used in a shell script.

User-created variables:

Customized variables created by the programmer for use in a shell script.

The name of a variable can be any sequence of letters and numbers,
but it must NOT begin with a number!

SHELL SCRIPTING

Environment Variables
Shell environment variables define the working environment while in your shell.
Some of these variables are displayed in the table below and its value can be viewed
by issuing the following pipeline command: set | more

Variable Name Purpose

PS1 Primary shell prompt

PWD Absolute path of present working directory

HOME Absolute path to user's home

PATH List of directories where commands / programs are located

HOST Host name of the computer

USER Name of the user logged in

SHELL Name (type) of current shell used

SHELL SCRIPTING

Environment Variables

Placing a dollar sign $ before a variable name will cause the
variable to expand to the value contained in the variable.

Examples:

echo “My current location is: $PWD”
who | grep $USER
echo $HOST

SHELL SCRIPTING

User Defined (Created) Variables

User-defined variables are variables which can be created by
the user and exist in the session.
Reference: https://mariadb.com/kb/en/user-defined-variables/

You assign a value by using the equal sign (without spaces)

name=value

If a variable’s value contain spaces or tabs,
it should be surrounded by quotes

fullName="David G Ward"

https://mariadb.com/kb/en/user-defined-variables/

SHELL SCRIPTING

User Defined Variables

There are a few methods to remove a variable’s value:

variableName=

or

unset variableName

Examples:

customerName=
unset userAge

CREATING SHELL SCRIPTS

Prompting User for Input to Store in a Variable:

The echo command with the –n option will display text without the newline character.

The read command pauses and waits for a user to enter data and then stores the
enter data into a variable when the user presses the ENTER key.

Example:

echo –n “Enter your age: ”
read age
echo “Your age is $age”

For Bash shell scripts, the read command with the –p option prompts
the user for data without requiring the echo command.

Example:

read –p “Enter your age: ” age
echo “Your age is $age”

SHELL SCRIPTING

User Defined (Created) Variables

Issuing the readonly command after setting the variable’s value prevents
the user from changing the value of the variable while the shell script is
running or during the duration of your shell session.

Examples:

readonly name
readonly phone="123-4567”

INSTRUCTOR DEMONSTRATION

Task1:

Write a Bash shell script to display the following message using an environment variable
so it will work in any user’s terminal if the shell script was issued:

My username is: (your-username)

Task2:

Write a Bash shell script to prompt the user for their full name and prompt the user for their age to
be stored in user-defined variables. Display the following output using the values of those variables:

Enter your Full Name: (your full name)
Enter your Age: (your age)
Hello, my name is (your full name), and I am (your age) years old.

SHELL SCRIPTING

Getting Practice

To get practice to help perform assignment #3, perform Week 10 Tutorial:

• INVESTIGATION 1: CREATING A SHELL SCRIPT

• INVESTIGATION 2: USING VARIABLES IN SHELL SCRIPTS

• LINUX PRACTICE QUESTIONS (Part A 1 – 2 , Part B Walk-Thru #1)

https://wiki.cdot.senecacollege.ca/wiki/Tutorial10:_Shell_Scripting_-_Part_1#INVESTIGATION_1:_CREATING_A_SHELL_SCRIPT
https://wiki.cdot.senecacollege.ca/wiki/Tutorial10:_Shell_Scripting_-_Part_1#INVESTIGATION_2:_USING_VARIABLES_IN_SHELL_SCRIPTS
https://wiki.cdot.senecacollege.ca/wiki/Tutorial10:_Shell_Scripting_-_Part_1#LINUX_PRACTICE_QUESTIONS

	 ULI101: Introduction to Unix / Linux and the Internet� � � Week 10 lesson 1�� introduction to shell scripting /� creating shell scripts /� shell variables� ��
	Lesson 1 topics
	Creating shell scripts
	Creating shell scripts
	Creating shell scripts
	Creating shell scripts
	Creating shell scripts
	Creating shell scripts
	Running a shell script
	Instructor demonstration
	Shell scripting
	Shell scripting
	Shell scripting
	Shell scripting
	Shell scripting
	Shell scripting
	Creating shell scripts
	Shell scripting
	Instructor demonstration
	Shell scripting

