ULII0I: INTRODUCTION TO UNIX / LINUXAND THE INTERNET

WEEK 4: LESSON I

DATA REPRESENTATION
NUMBERING CONVERSION

PHOTOS AND ICONS USED INTHIS SLIDE SHOW ARE LICENSED UNDER CC BY-SA

LESSON I TOPICS

Data Representation

- Purpose
- Decimal, Binary, Octal, Hexadecimal Numbering Systems
- Numbering Conversion Methods
- Demonstration

Perform Week 4 Tutorial

- Investigation I
- Review Questions (Questions I - 5)

Complete Assignment I

Work on Assignment 2 (Section I: Practice Using The viText Editor)

DATA REPRESENTATION

Data Representation

Digital computers are electronic devices that contain a series of circuits and voltage levels that can store / represent data.

Binary numbers can represent those series of circuits with voltage levels. Those binary numbers (0's and I's) are combined in a sequence to form a byte.

Bytes are used to represent numbers or characters.
It is the job of the computer program to understand if those bytes (series of o's and/og l's) represent numbers or characters

Understanding how can be useful when 04 of histratins

DATA REPRESENTATION

Numbering Conversion:

Computers have evolved over time. During that time, humans have interfaced with the computer by binary numbers, or by using short-cuts such as octal or hexadecimal numbers.

Computer Networking / Support Specialists and Computer

Programmers occasionally need to convert between numbering systems:

- Converting decimal numbers to binary number for URLs (subnetting)
- Converting decimal numbers to hexadecimal numbers to formatwebpages (with web-safe colours)
- Converting binary numbers to octal numbers for setting file permissions in Unix/Linux

Before performing numbering conversions, we need to better understand the decimal, binary, octal and hexadecimal numbering systems.

DEC.	BINARY								HEX.
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	2
3	0	0	0	0	0	0	1	1	3
4	0	0	0	0	0	1	0	0	4
5	0	0	0	0	0	1	0	1	5
6	0	0	0	0	0	1	1	0	6
7	0	0	0	0	0	1	1	1	7
8	0	0	0	0	1	0	0	0	8
9	0	0	0	0	1	0	0	1	9
10	0	0	0	0	1	0	1	0	A
11	0	0	0	0	1	0	1	1	B
12	0	0	0	0	1	1	0	0	C
13	0	0	0	0	1	1	0	1	D
14	0	0	0	0	1	1	1	0	E
15	0	0	0	0	1	1	1	1	F
16	0	0	0	1	0	0	0	0	10
17	0	0	0	1	0	0	0	1	11
				\ldots					
253	1	1	1	1	1	1	0	1	FD
254	1	1	1	1	1	1	1	0	FE
255	1	1	1	1	1	1	1	1	FF

DATA REPRESENTATION

Decimal Numbering System (Humans)

The numbering system used by humans.
The decimal numbering system consists of digits ranging from 0 to 9 .

The fact that humans started counting on their fingers and thumbs most likely lead to the development of this numbering system.

The decimal numbering system is based on sums of the power of 10 which provides a framework for mathematic calculations.

DATA REPRESENTATION

Binary Numbers
 (Computers)

Digital computers have circuits which representing data in terms of voltage levels. Multiple circuits are used to represent data (in the form of binary numbers).

The binary numbering system consists of digits ranging from $\mathbf{0}$ to \mathbf{I}. The numbering system is based on sums of the power of 2.
 digit consists of the ryw
 move in a right to

DATA REPRESENTATION

Octal / Hexadecimal Numbers (short-cuts)

The octal and hexadecimal numbering systems consist of digits ranging from $\mathbf{0}$ to $\mathbf{7}$ and ranging from $\mathbf{0}$ to \mathbf{F} respectively.

The octal and hexadecimal numbering system are based on sums of the power of $\mathbf{8}$ and $\mathbf{1 6}$ respectively. For hexadecimal numbers, values for $\mathbf{1 0}$ to $\mathbf{1 5}$ are represented by the characters A to \mathbf{F} respectively.

These numbering systems are useful since they are both multiples of 2
 (binary) and can be used as short-cuts to represent a series of binary numbers:

I octal digit = $\mathbf{3}$ binary digits
I hexadecimal digit = 4 binary digits).

DATA REPRESENTATION

Performing Numbering Conversion

You will learn several numbering conversion methods in this course:
I. Binary to Decimal
2. Decimal to Binary
3. Octal to Binary / Binary to Octal
4. Hexadecimal to Binary / Binary to Hexadecimal
5. Octal to Hexadecimal / Hexadecimal to Octal

NOTE: Each of these techniques are unique. You will be expected not only to perform these calculations on a quiz / midterm exam / final exam but also show your work and use the same technique show in these slides to obtain full marks.

DATA REPRESENTATION

Numbering Conversion Method I: Binary to Decimal

When converting binary numbers to decimal numbers, perform the following steps:

1. Write down the binary number.
2. Starting from the right-side, draw L's below the binary number moving to the left (refer to diagram on right).
3. Starting on the rightmost " L ", multiply the value (placeholder) by $\mathbf{2}$ to the power of zero.
4. Continually repeat step \#3 moving leftwards, increasing the power of 2 by \mathbf{I} (refer to diagram on right).

5. Add up the results to obtain the decimal value equivalent.

NOTE: To convert octal and hexadecimal numbers to decimal, replace the number 2 (in red in the diagram to the right) with 8 (for octal) or 16 (for hexadecimal).

DATA REPRESENTATION

Instructor Demonstration

Your instructor will now demonstration how to perform a
Binary to Decimal conversion

DATA REPRESENTATION

Numbering Conversion Method 2:
 Decimal to Binary

When converting decimal numbers to binary numbers, perform the following steps:
I. Write down the decimal number to be converted.
2. On the right-side, write the number I and moving leftwards,keep doubling the numbers until that number is greater than the decimal number to be converted (refer to the diagram on the right).
3. Starting on the left-side of those doubled numbers, compare that number with the decimal number. If that number if less than or equal to the decimal number, then write a I below and subtract that number from the decimal number to get a remainder. If the number is greater than decimal number (or remainder), then write a $\mathbf{0}$ below.
4. Repeat step \#3 (moving rightwards and comparing the number with the decimal's remainder)

NOTE: If you are converting to 8-bit, 32-bit, etc., add leading zeros if necessary.

DATA REPRESENTATION

Instructor Demonstration

Your instructor will now demonstration how to perform a
Decimal to Binary conversion

DATA REPRESENTATION

Numbering Conversion Method 3: Octal to Binary I Binary to Octal

Binary to Octal
I. One octal number represents 3 binary numbers, so starting from rightside, group binary digits into groups of 3 (add leading zeros if necessary).
2. Write (4)(2)(I) under each group of 3 binary numbers.
3. Multiply the value or "placeholder" (i.e. 0's and I's) by the corresponding (4)(2)(I) for each group to obtain the octal number (refer to diagram of binary to octal conversion).

Octal to Binary
I. One octal number represents 3 binary numbers, so space-out the octal numbers to make space for a binary number.
2. Write (4)(2)(I) under each octal number.
3. Write 0's or I's for each group of binary numbers to add up to the corresponding octal number (refer to diagram of octal to binary conversion).

101001110

$$
\begin{array}{ccccccccc}
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\hline(4)(2)(1)(4)(2)(1) & (4)(2)(1) \\
5 & 1 & & 6
\end{array}
$$

735

7	3	5
(4) (2) (1)	(4) (2) (1)	(4) (2) (1)
111	011	101

DATA REPRESENTATION

Instructor Demonstration

Your instructor will now demonstration how to perform an
Octal to Binary conversion and a Binary to Octal conversion.

DATA REPRESENTATION

Numbering Conversion
 Method 4: Hexadecimal to Binary / Binary to Hexadecimal

Binary to Hexadecimal

- One hexadecimal number represents $\mathbf{4}$ binary numbers, so starting from right-side, group binary digits into groups of 4 (add leading zeros if necessary).
- Write (8)(4)(2)(1) under each group of 4 binary numbers.
- Multiply the placeholders (i.e. \mathbf{O} 's and I 's) by the corresponding (8)(4)(2)(I) for each group to obtain the octal number.
- Convert values from $\mathbf{1 0}$ to $\mathbf{1 5}$ to \mathbf{A} to \mathbf{F}
(refer to diagram of binary to hexadecimal conversion)
Hexadecimal to Binary
- One hexadecimal number represents 4 binary numbers, so space-out the hexadecimal numbers to make space for a binary number.
- Convert letters \mathbf{A} to \mathbf{F} to $\mathbf{1 0}$ to 15 (refer to diagram of binary to hexadecimal conversion)
- Write (8)(4)(2)(1) under each hexadecimal number.
- Write $\mathbf{0}$'s or I's for each group of binary numbers to add up to the corresponding hexadecimal number (refer to diagram of hexadecimal to binary conversion).

101111000101	A-10
	B-11
$1 \begin{array}{llllllllllll}1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$	C-12
(8)(4)(2)(1) (8)(4)(2)(1)(8)(4)(2)(1)	D-13
	E-14
115	F-15
B C 5	
$101111000101=\mathrm{BC} 5$	

D5F A-10			
			A-10 B-11
D	5	F	B-11 C-12
(8) (4) (2) (1)	(8) (4) (2) (1)	(8) (4) (2) (1)	D-13
$\begin{array}{llllll}1 & 1 & 0 & 1\end{array}$	$\begin{array}{llll}0 & 1 & 1\end{array}$		E-14
			F-15

DATA REPRESENTATION

Instructor Demonstration

Your instructor will now demonstration how to perform a
Hexadecimal to Binary conversion and a Binary to Hexadecimal conversion.

DATA REPRESENTATION

Numbering Conversion Method 5:
 Octal to Hexadecimal / Hexadecimal to Octal

To convert using the method, simply use binary as a "bridge".
Example:

```
Octal -> binary -> Hexadecimal
Hexadecimal -> binary -> Octal
```

- To convert octal to hexadecimal, convert octal to binary, then convert binary to hexadecimal.
- To convert hexadecimal to octal, convert hexadecimal to binary, then convert binary to octal.

DATA REPRESENTATION

Instructor Demonstration

Your instructor will now demonstration how to perform an Octal to Hexadecimal conversion and a Hexadecimal to Octal conversion.

DATA REPRESENTATION

Getting Practice

To get practice to help perform Assignment \#2, perform Week 4 Tutorial:

- INVESTIGATION I:NUMBERING CONVERSIONS
- LINUX PRACTICE QUESTIONS (Questions I - 5)

Complete Assignment I
Work on Assignment 2:

- Section I: Practice UsingThe vi Text Editor (Covered previously in Tutorial 2)

